skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Meunier, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Meunier, V (Ed.)
    ur previous work investigated the templating ability of graphene oxide-derived additives to induce graphitization of the novolac matrix. The findings led to two working hypotheses: the additives act as templates that promote matrix aromatic alignment to their basal planes during carbonization (referred to here as physical templating) in addition to forming radical edge sites that bond to the decomposing matrix (referred to here as chemical templating). However, results mainly underscored the role of functional groups on the GO additives (chemical templating). The aim of this current work seeks to differentiate the contributions of the operative mechanisms on graphitization. To study this, 2D materials with minimal oxygen functionalization, graphene and hexagonal boron nitride (hBN) were used as templates to induce graphitization of novolac matrix. First, the optimum weight percent of the 2D materials was determined with the composite graphitic quality measured by X-ray diffraction and Raman spectroscopy. Results revealed that hBN did not induce graphitization of novolac and was attributed to the absence of a sp² framework in hBN, unable to provide the crucial π-π interactions with the aromatic rings of the matrix. In contrast, the graphene additives mirrored one another and showed improved graphitization of the novolac. From these results, it was surmised that both mechanisms are operative; while physical templating offers control over long-range order in the form of crystallite height, chemical templating contributes to carbon reorganization and lateral growth extent. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026